공업수학에서 접했던 eigenvector 와 eigenvalue에 대해 이해하기 쉽게 설명한 자료를 발견했다.
동전을 회전시킬 때, 식빵위에 잼을 펴바를 때, 고무 밴드를 잡아당겨 늘릴 때의 eigenvector와 eigenvalue는 무엇일까?
변환에서 잡아당긴(펴바른) 방향이 유지될 때, 이것을 변환의 EIGENVECTOR라고 하고 그 양을 EIGENVALUE라고 한다.
Eigenvalues는 어느 비율로 변했는가, 즉 multipliers이다. 고무밴드가 2배로 늘어났다면 eigenvalue는 2이다.
Eigenvalue는 변환(operation)이 있어야하고, 또한 이때 방향(the eigenvector, 고무 밴드가 왼쪽에서 오른쪽으로 늘어남)을 갖는다.
동전이 360도 돌았을 때 : 모든방향으로 돌기 때문에 각 방향으로의 고유벡터, 고유값 1
잼을 펴바를 때 : 나이프의 이동방향으로의 고유벡터, 펴바른 길이가 2배라면 고유값 2
고무 밴드를 늘릴 때 : 고무 밴드를 늘린 방향으로의 고유벡터, 늘어난 길이가 2배라면 고유값 2
댓글
댓글 쓰기