Multiple View Geometry Study Note 2. Projective Geometry and Transformations of 2D (Cont.3) 지난번 MVG(3)에서는 2D geometry에서 affine properties의 복원에 대해서 공부했습니다. 이번에는 metric properties의 복원에 대해 공부할 것 입니다. 지난 공부에서 배웠듯이 metric properties에는 angle, length ratio가 있습니다. 이 성분들을 복원하기 위해 우리는 conic dual to circular points라는 개념을 사용합니다. 그럼 circular points부터 시작하겠습니다. WIKI : circular points at infinity? absolute points라고도 불리는 circular points는 similarity transform에 불변하는 점입니다. I,J로 표시하는데 복소수를 사용하는 저런 좌표를 canonical coordinates라고 하고 I와J는 서로 켤레 복소수 임을 알 수 있습니다. 이 두 점이 similarity transform에 불변하는 것은 왼쪽 슬라이드 두번째 식을 보면 알 수 있습니다. 변환 결과 homogeneous 좌표 모든부분에 같은 실수가 곱해지므로, 결과적으로 similarity transform에 불변함을 증명할 수 있습니다. 'circular points at infinity lie on the complexification of every real circle.' 코닉이 원이 되려면 코닉 기본식에서 a=c, b=0을 만족해합니다. complexification(infinity와 관련?)이기 때문에 x3=0인 것 같습니다. 그럼 결국 오른쪽의 코닉 식에서 만족하는 점은 circular points at infinity인 I와 J 입니다. 또한 I와 J를 외적하면 (0,0,i)인 복소수 곱의 line
댓글
댓글 쓰기