기본 콘텐츠로 건너뛰기

글: The life guide (2013.10)

인간은 죽음이라는 병에 걸린채로, 타의적으로 태어나 인생이라는 길을 걷는다.
인생은 하루, 하루가 겹겹히 쌓여 이루어진다.
하루는 순간의 연속.
매 순간 선택의 기로에 서야 하는 이 고통스러운 존재는, 수 없이 많은 선택지에서 자신의 답을 선정한다.
그렇다면,
'선택'은 내 권한인가?
그렇다고 한다면 '선택지'는 나의 권한인가?
만약, 그렇지 않다고 한다면 다시 한번 '선택은 무엇인가' 에 대해, 다시 생각해 보아야 할 것이다.

인간은 주관적 판단의 동물이다. 나는 그것을 영혼이 있다고 한다.

흔히 사람들은 인생을 '길을 걷는 것'으로 비유 하곤 한다.

인간은 어디로 흐르는 걸까?
시작과 끝을 알 수 없는 이 거대한 흐름 속에서, 우리는 방향을 거슬러 흐름이 시작한 곳으로 돌아가길 시도 할 수 있다. 아니면, 흐름에 몸을 맡기고 하늘을 바라 볼 수도, 깊은 속으로 들어가 잠수를 할 수도 있다.
나는 이 흐름의 시작까지 거슬러 올라가 그 근원이 무엇인지 알 수 없거나, 더 빨리 헤엄쳐 그 끝을 미리 볼 수 없다면,  (- 지워짐 -)
우리는 인생을 마치지 전에 죽음에 대한 자신만의 결론을 내야한다. 우리는 죽음을 생각하는 동물이다.

2013.10.??

댓글

이 블로그의 인기 게시물

공부: Multiple View Geometry (3)Cont.

Multiple View Geometry Study Note 2. Projective Geometry and Transformations of 2D (Cont.3) 지난번 MVG(3)에서는 2D geometry에서 affine properties의 복원에 대해서 공부했습니다. 이번에는 metric properties의 복원에 대해 공부할 것 입니다. 지난 공부에서 배웠듯이 metric properties에는 angle, length ratio가 있습니다. 이 성분들을 복원하기 위해 우리는 conic dual to circular points라는 개념을 사용합니다. 그럼 circular points부터 시작하겠습니다. WIKI : circular points at infinity? absolute points라고도 불리는 circular points는 similarity transform에 불변하는 점입니다. I,J로 표시하는데 복소수를 사용하는 저런 좌표를 canonical coordinates라고 하고 I와J는 서로 켤레 복소수 임을 알 수 있습니다. 이 두 점이 similarity transform에 불변하는 것은 왼쪽 슬라이드 두번째 식을 보면 알 수 있습니다. 변환 결과 homogeneous 좌표 모든부분에 같은 실수가 곱해지므로, 결과적으로 similarity transform에 불변함을 증명할 수 있습니다. 'circular points at infinity lie on the complexification of every real circle.' 코닉이 원이 되려면 코닉 기본식에서 a=c, b=0을 만족해합니다. complexification(infinity와 관련?)이기 때문에 x3=0인 것 같습니다. 그럼 결국 오른쪽의 코닉 식에서 만족하는 점은 circular points at infinity인 I와 J 입니다. 또한 I와 J를 외적하면 (0,0...

공부: Multiple View Geometry (1)

Multiple View Geometry Study Note 1. Introduction 연구실에서 MVG 세미나를 진행하여, 참석하게 되었다. 블로그를 시작하면서 내 공부를 정리하는 공간으로 활용해 보고 싶었는데 이번 기회에 제대로 시작하려고 한다. 그림 1. 다시점에서 3D 객체의 사영(projection) 위 그림 1.을 인식하는 것 부터 관련 공부가 펼쳐진다. 실세계의 3D 물체가 카메라 등의 2D 영상으로 매핑되는 것, 관련된 카메라 파라미터, 여러 수학적 설명 방법들을 이해한다. 그리고 더 나아가서 공학적으로 사용한다. 3D가 2D로 매핑되는 것과 반대로, 2D 영상과 시점의 정보를 사용하여 3D 객체를 재현할 수도 있을 것이다. 3D reconstruction 연구에는 다양한 접근 방법이 있다. 하지만 모든 방법에서 가장 기본이 되는 것은 MVG인 것 같다. 관련된 영상들을 몇개 찾아보니 재미있을 것 같지만 굉장히 어렵다고 한다. 앞으로 공부가 기대된다.   3D models from 2D video - automatically Researchers of Computer Vision and Geometry lab Transforming a 2D image into 3D Researchers of Carnegie Mellon University Mathematical  : 3D 컴퓨터 비전 위한 기하학 Seminar study :   D. Kim, MVG Seminar, 2012 winter @IPIS\ Reference book : "Multiple View Geometry in Computer Vision" by Richard Hartley Multiple View Geometry in Computer Vision Richard Hartley |   Cambridge University Press |  200...

공부: Multiple View Geometry (3)

Multiple View Geometry Study Note 2. Projective Geometry and Transformations of 2D (Cont.2) 첫번째로 맡게된 발표에서 다룬 내용은 Projective transformation 된 영상에서, 원영상의 Affine properties와 Meric properties를 회복시켜서 원영상의 모양을 복원하는 주제입니다.  이전의 개념들을 사용하여 실질적인 목적을 수행하는 내용으로 중요한 내용입니다. 발표준비를 하면서 몇일 밤을 새면서 공부했는데, 공부하면 할 수록 너무 재밌는 내용입니다.  이전에 머릿 속에 대강 있던 이차원 공간상의 여러 기하학적 개념을 구체화 하고,  수학이란 툴을 사용해서 실제 영상에 적용하는 이론을 배웠습니다.  여태 살아오면서 가장 열심히 공부했던 것 같습니다.  그럼, 내가 준비한 발표자료와 간단한 설명을 정리해보겠습니다.  따끈따근한 오늘 발표의 포스팅입니다. 이 발표에서는 Projective Transform된 이차원 영상의 특성과 그것을 복원하는 복원할 때 어떤 접근 방법들이 있는지 알아보겠습니다. Projective Transform은 카메라, 극단적으로 우리 시각에서도 항상 일어나는 개념으로 모두가 잘 알고 있을 것으로 생각됩니다.  이제 시작할 이야기를 이해 하시려면 지난번 MVG(2)의 개념들을 알고 있어야합니다.  영상의 기하학적인 성질은 크게 두가지로 나눌 수 있습니다. 첫번째로 Affine properties는 선의 평행성, 평행선 끼리의 길이 비율 입니다. Affine properties는 line at infinity와 밀접하게 연관하여 결정되는 것으로, line at infinity를 실선으로 매핑시키는 Projective transform 성분중 Hp으로 특성이 왜곡됩니다. 두번째로 Metirc p...